Nature-Based Solutions for Climate Resilient Design

Moakley Park Preliminary Resilience Design June 9, 2020 Presentation for ACEC

> Julie Eaton Ernst, PE Lead Resiliency Engineer Weston & Sampson

IMAGE COURTESTY OF: Stoss Landscape Urbanism

a may make a second

Weston & Sampson

MOAKLEY PARK IS: ONE OF BOSTON'S LARGEST PARKS

LAY 2020

IMAGE COURTESTY OF: Stoss Landscape Urbanism

HISTORICALLY, MOAKLEY WAS A SALT MARSH & MUD FLAT (1775)

IMAGE COURTESTY OF: Stoss Landscape Urbanism

uskle Bank

HISTORICALLY, MOAKLEY WAS ...

a salt marsh & mud flat (1775)

filled with clay (1919)

capped with soil for ball fields (1919)

a dump (1909)

a playground (1909)

capped with sand for the beach (1919)

EVALUATING CLIMATE RISKS AT MOAKLEY PARK

CLIMATE HAZARDS OVERVIEW

SEA LEVEL RISE AND STORM SURGE

2030 SLR = 9 inches

2050 SLR = 21 inches

2070 SLR = 40 inches

SOURCE: Massachusetts Coastal Flood Risk Model

EXTREME PRECIPITATION

Existing BWSC and MWRA Infrastructure

IMAGE COURTESTY OF: Nitsch Engineering

STORM EVENT MODELLED		SOURCE
Water Quality Storm	1.25 inches	BSWC, BPDA
Current 100-yr, 24-hr Storm	8.09 inches	NOAA Atlas 14
2070 100-yr, 24-hr Storm	11.70 inches	City of Cambridge

RAINFALL FROM STORMS WILL INCREASE

"Today" baseline represents historical average from 1948-2012 Confidence intervals are not available for these projectio

so these numbers should be considered as the middle of IMAGE COURTESTY OF: Climate Ready Boston

EXTREME TEMPERATURES + URBAN HEAT ISLAND EFFECT

SOCIAL VULNERABILITY + ENVIRON. JUSTICE POPULATIONS

UNDERSTANDING EXISTING SITE CONDITIONS

PRELIMINARY SUBSURFACE EXPLORATION DATA

GENERALIZED OBSERVATIONS - NOT FOR DESIGN

SUBSURFACE EXPLORATION PROGRESS

As of September 26, 2019

NATURE-BASED SOLUTIONS AT MOAKLEY PARK

ENVIRONMENTAL, SOCIAL, & ECONOMIC BENEFITS OF NATURE-BASED SOLUTIONS

- Restored coastal habitats—increased biodiversity, habitat growth, and human-wildlife interactions
- Improved resilience against storm events—reducing damages to surroundings
- Reduced shoreline erosion
- Improved air and water quality—carbon sequestration, pollutant removal, nutrient storing

- Improved public health and wellbeing through exercise and community interaction
- Increased access to greenspace for environmental justice populations
- Increased quality of life & public realm benefits

- Reduced long-term maintenance costs in comparison with hard/gray infrastructure
- Decreased energy demands and consumption
- Reduced public health costs

COASTAL WETLANDS + LANDSCAPES

London Wetland Courtesy Of: Berkeley Homes

TOP IMAGE COURTESY OF: Berkeley Homes *RIGHT IMAGE COURTESY OF: Landscape Architecture Platform SOURCE: Naturally Resilient Communities*

- Retain and filter stormwater
- Manage future frequent seawater inundation
- Reduce erosion from increased sea-level rise/storm surge
- Reduce flood damages and resulting recovery costs
- Reduce wave heights from storm surge
- Sequester carbon & increase biomass production

STORMWATER MEADOWS AND SWALES

- Reduce stormwater runoff with increased vegetation
- Improve stormwater quality and reduce quantity entering existing infrastructure
- Restore wildlife habitat and improve biodiversity

MEADOW BIOSWALE

FREQUENTLY INUNDATED

• Stabilize soil and soil nutrients, dispersing the force of rainwater and wave splash

REQUENTLY INUNDATED

WET MEADOW

TOP IMAGE COURTESY OF: AmericanRivers.org RIGHT IMAGE COURTESY OF: Nitsch Engineering SOURCE: Low Impact Development Center & Naturally Resilient Communities

TREE TRENCHES & INCREASED TREE CANOPY

- Slow and reduce stormwater runoff
- Reduce urban heat island effect
- Stabilize soil and surrounding wildlife habitats
- Reduced cooling expenses for nearby properties
- Store and sequester carbon
- Increase air quality
- Improve soil + water quality
- Increase public health

SOURCE: Davey Resource Group, Inc. and Naturally Resilient Communities Images Courtesy of: BWSC

ADDITIONAL BENEFITS OF NATURE-BASED SOLUTIONS

- Improved public realm & open space
- Educational opportunities
- Transferability for other sites
- Reduced costs of gray infrastructure improvements
- Reduced long-term maintenance costs

Images Courtesy Of: Stoss Landscape Urbanism

NEXT STEPS – MOVING FORWARD

Image Courtesy Of: Stoss Landscape Urbanism

questions? westonandsampson.com

transform your environment

thank you

westonandsampson.com

