BEALS + THOMAS

Bridging the Gap: Designing Ecologically Sound and Cost-Efficient Stream Crossings for Ground-Mounted Solar Projects

Eric J. Las, PE Vice President Beals and Thomas, Inc. Titus Edwards Lead Senior Bridge Consultant York Bridge Concepts, Inc.



About Us

BEALS + THOMAS

YOUR VISION. OUR EXPERTISE.

Company Profile

- For over 35 years, Beals and Thomas, Inc. (B+T) has been providing professional civil engineering, landscape architecture, land surveying, environmental planning, permitting, and wetlands consulting that support the development and conservation of land and water resources throughout New England.
- B+T Renewable Energy Experience:
 - 60+ projects
 - 150+ MW across MA
 - 30+ municipalities
 - 6 Projects with stream crossings


Presentation Overview

- Solar Site Access Challenges
- Characteristics of Good Stream Crossings
- Regulatory Requirements
- Client and Designer Considerations
- Typical Stream Crossing Options
- Cost Comparison Case Study
- Timber Bridge Construction Sequence
- Timber Bridge Examples
- York Bridge Concepts
- Round Table Discussion

Site Access Challenges

- Large sites & long access roads
- Limited frontage
- Steep slopes and topographic constraints
- Adequate turning movements
- Unavoidable stream and wetland crossings

Characteristics of Good Stream Crossings

- Spans the stream and banks (including braided channels)
- Maintains comparable water velocities
- Has a natural streambed
- No observable change in stream channel

"Safe, stable stream crossings can accommodate wildlife and protect stream health while reducing expensive erosion and structural damage."

– Massachusetts Stream Crossing Handbook

MA River and Stream Crossing Standards

• Two Standards: General and Optimum

Balance cost and logistics with degree of stream protection warranted in sensitive habitats

- Three Goals of Standards:
 - 1. Fish and Aquatic Organism Passage
 - 2. River and Stream Continuity
 - 3. Wildlife Passage
- Full Aquatic Organism Passage (AOP) is achieved when a crossing allows unrestricted movement of all aquatic organisms indigenous to the water body
- Crossings that achieve full AOP are expected to maintain more natural river hydrology and transport of sediment and woody debris

Stream Crossing Standards Summary

	General Standards	Optimal Standards
Structure Type	Open-bottom span preferred	Bridge
Embedment	 If a culvert, then it should be embedded: A minimum of 2 feet for all culverts A minimum of 2 feet and at least 25 percent for round pipe culverts When embedment material includes elements > 15 inches in diameter, embedment depths should be at least twice the D₈₄ of the embedment material 	N/A
Crossing Span	Minimum: 1.2 x bank full-width	Minimum: 1.2 x bank full-width
Substrate	Matches stream substrate	Matches stream substrate
Water Depth & Velocity	Matches water depth & velocity in natural stream over a range of flows	Matches water depth & velocity in natural stream over a range of flows
Openness (& height)	Openness: 0.82 ft. (0.25 m)	 Conditions that inhibit wildlife passage over road Openness: 2.46 ft (0.75 m) Height: 8 ft (2.4 m) Otherwise Openness: 1.64 ft (0.5 m) Height: 6 ft (1.8 m)
Banks	 On both sides of the stream Match the horizontal profile of the existing stream and banks Constructed so as not to hinder use by riverine wildlife 	 On both sides of the stream Match the horizontal profile of the existing stream and banks Constructed so as not to hinder use by wildlife Sufficient headroom for wildlife

MASSACHUSETTS RIVER AND STREAM CROSSING STANDARDS

Developed by the

RIVER AND STREAM CONTINUITY PARTNERSHIP

Including:

University of Massachusetts Amherst

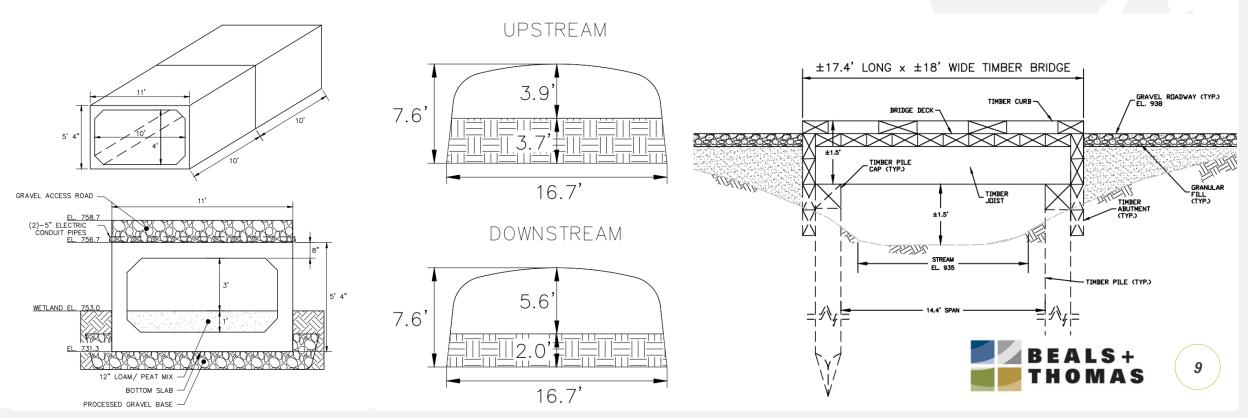
The Nature Conservancy

Massachusetts Division of Ecological Restoration-Riverways Program American Rivers

> March 1, 2006 Revised March 1, 2011

Source: Massachusetts River and Stream Crossing Standards

7


Client and Designer Considerations

- Stream Crossing Standards
- Dimensional & Load Rating
 - Span Length & Clear Width
 - Construction Equipment, Emergency Response, Battery Storage
- Geotechnical
 - Geotechnical Borings
 - Depth of Organics, Unsuitables, Refusal
- Cost & Schedule
 - Structural Design
 - Materials, Equipment, Labor
 - Site Contractor Support
 - Timeframe for Delivery/Construction/Installation
- Uncertainty
 - Based on Extent of Data Available
 - Potential for Delays or Change Orders

Typical Stream Crossing Options

- Access to solar array area can be challenging and may include unavoidable stream crossings
 - Try to avoid implementing stream or wetland crossing, if practicable, through careful site plan design
- Common types of Stream Crossings:
 - Open or Closed Bottom Concrete Box Culvert
 - Aluminum Box or Structural Plate
 - Timber Bridge

Open or Closed Bottom Concrete Box Culvert

Design and Permitting Considerations:

- New versus replacement crossing
- Temporary resource area impacts
- Load rating

Construction Considerations:

- Temporary cofferdams or flow bypass
- Excavation dewatering
- Excavation of peat, organics, and other unsuitables
- Excavation for concrete footers or bedding/base material
- Recreate natural stream bed within structure
- **Equipment & Labor**
- Excavation and earthmoving
- Crane access

Aluminum Box or Structural Plate

Design and Permitting Considerations:

- Lightweight, wide span, low rise
- Variable geometry and limitations
- Construction Considerations:
 - Temporary cofferdams or flow bypass
 - Excavation dewatering
 - Excavation of peat, organics, and other unsuitables
 - Excavation for footers or bedding/base material
 - Recreate natural stream bed within structure
- Equipment & Labor
 - Excavation and earthmoving

Timber Bridge

Design and Permitting Considerations:

- Extremely customizable
- Integrated wingwall, guiderail and curbing options
- Depth to bedrock challenges drilling/concrete footers

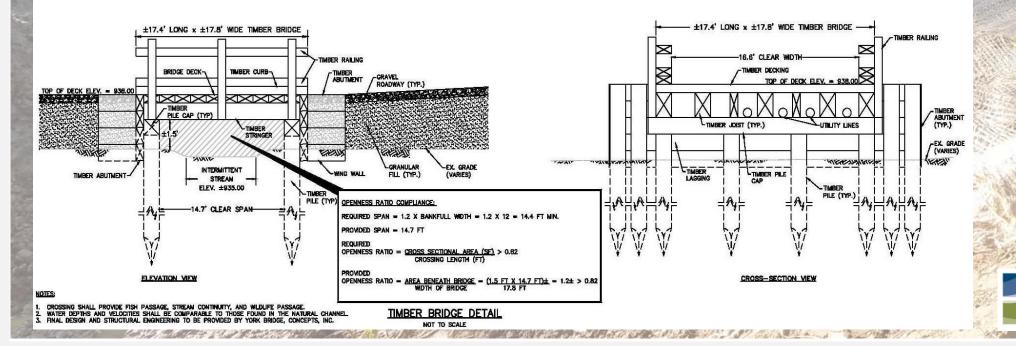
Construction Considerations:

- No need for temporary cofferdams or flow bypass
- No excavation dewatering
- No excavation of peat, organics, and other unsuitables
- No excavation for footers or base material
- Timber pile driving with vibratory hammer
- Recreate natural stream bed within structure
- Ease of electrical conduit installation
- Equipment & Labor
 - Minimal equipment need
 - Single excavator or mini-excavator
 - Labor driven primarily carpentry

Cost Comparison Case Study

Required Span = 14.4 ft min; Clear Width = 16 ft; Load Rating = HS20-44

Aluminum Arch:


 Design/Materials:
 \$28,800

 GC/Sitework:
 \$63,400

 Total = \$92,200

Timber Bridge:	
Design/Materials:	\$84,420
GC/Sitework:	\$0
	Total = \$84,420
Savings of \$7 780	

EALS+

Timber Bridge Construction Sequence

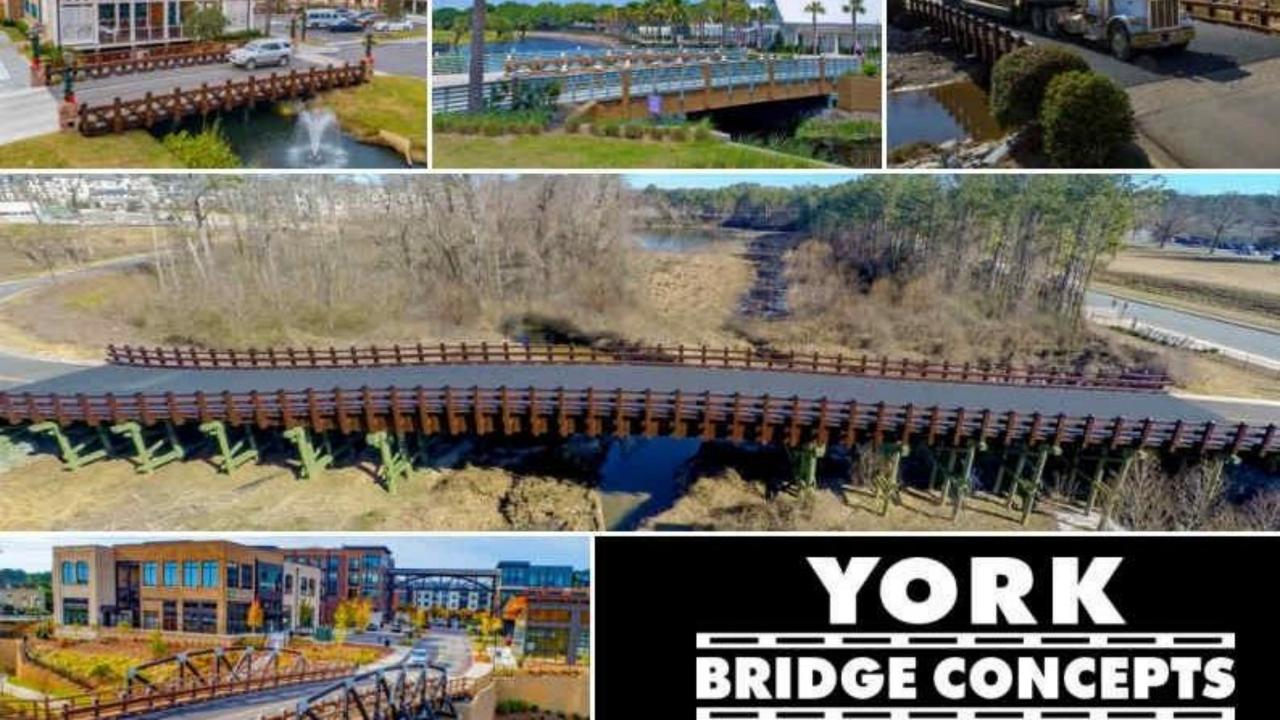
Finished Timber Bridge Stream Crossings

15

MAS

Winchendon, MA

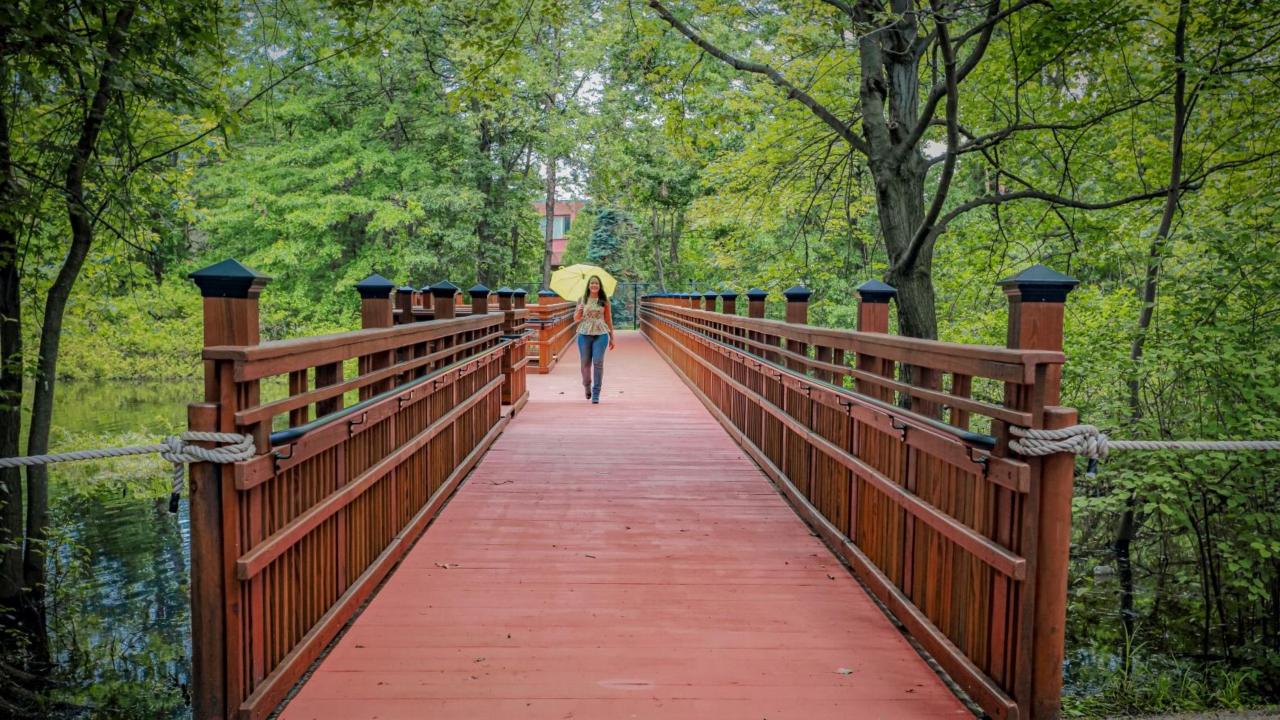
Finished Timber Bridge Stream Crossings


Douglas, MA

Finished Timber Bridge Stream Crossings

17

Wales, MA



Round Table Discussion

- Thoughts on utilizing timber bridges for solar stream crossings?
- What types of stream crossing options do you typically recommend?
- Other design or construction considerations?
- General Q&A?

31